Placental Nutrient Transport and Intrauterine Growth Restriction
نویسندگان
چکیده
Intrauterine growth restriction refers to the inability of the fetus to reach its genetically determined potential size. Fetal growth restriction affects approximately 5-15% of all pregnancies in the United States and Europe. In developing countries the occurrence varies widely between 10 and 55%, impacting about 30 million newborns per year. Besides having high perinatal mortality rates these infants are at greater risk for severe adverse outcomes, such as hypoxic ischemic encephalopathy and cerebral palsy. Moreover, reduced fetal growth has lifelong health consequences, including higher risks of developing metabolic and cardiovascular diseases in adulthood. Numerous reports indicate placental insufficiency as one of the underlying causes leading to altered fetal growth and impaired placental capacity of delivering nutrients to the fetus has been shown to contribute to the etiology of intrauterine growth restriction. Indeed, reduced expression and/or activity of placental nutrient transporters have been demonstrated in several conditions associated with an increased risk of delivering a small or growth restricted infant. This review focuses on human pregnancies and summarizes the changes in placental amino acid, fatty acid, and glucose transport reported in conditions associated with intrauterine growth restriction, such as maternal undernutrition, pre-eclampsia, young maternal age, high altitude and infection.
منابع مشابه
Placental mTOR links maternal nutrient availability to fetal growth.
The mTOR (mammalian target of rapamycin) signalling pathway functions as a nutrient sensor, both in individual cells and, more globally, in organs such as the fat body in Drosophila and the hypothalamus in the rat. The activity of placental amino acid transporters is decreased in IUGR (intrauterine growth restriction), and recent experimental evidence suggests that these changes contribute dire...
متن کاملFetal growth restriction: a workshop report.
Intrauterine growth restriction (IUGR) is associated with significantly increased perinatal morbidity and mortality as well as cardiovascular disease and glucose intolerance in adult life. A number of disorders from genetic to metabolic, vascular, coagulative, autoimmune, as well as infectious, can influence fetal growth by damaging the placenta, leading to IUGR as a result of many possible fet...
متن کاملIFPA 2005 Award in Placentology Lecture. Human placental transport in altered fetal growth: does the placenta function as a nutrient sensor? -- a review.
Intrauterine growth restriction is associated with a range of alterations in placental transport functions: the activity of a number of transporters is reduced (Systems A, L and Tau, transporters for cationic amino acids, the sodium-proton exchanger and the sodium pump), placental glucose transporter activity and expression are unchanged whereas the activity of the calcium pump is increased. In...
متن کاملMaternal–Fetal Nutrient Transport in Pregnancy Pathologies: The Role of the Placenta
Appropriate in utero growth is essential for offspring development and is a critical contributor to long-term health. Fetal growth is largely dictated by the availability of nutrients in maternal circulation and the ability of these nutrients to be transported into fetal circulation via the placenta. Substrate flux across placental gradients is dependent on the accessibility and activity of nut...
متن کاملMRI detection of asymmetric intrauterine growth restriction due to placental insufficiency
Purpose: Intrauterine growth restriction (IUGR) is defined as a fetus that is not maintaining its genetic growth potential in utero. This reduced growth is often caused by placental insufficiency resulting in decreased nutrient and oxygen supply to the fetus. To increase the likelihood of survival, fetal adaptations occur, which include brain sparing leading to asymmetric growth restriction, al...
متن کامل